侏罗纪时期一天的时长大约只有23小时10—20分钟。由于月球和太阳对地球的潮汐作用消耗了地球的能量,地球自转越来越慢,日长因此变长,平均约每100年变长0.002秒。
黄乘利指出,除了这一长期规律外,科学家们还发现日长变化在相对短期内具有周期性规律。一般认为,尺度为数十年的年代际变化和尺度约5—10年的亚十年变化很可能与地球深内部物理有关。
此次研究中,研究人员发现除了此前公认的6年周期外,日长变化每隔8.6年也“轮回”一次。值得一提的是,日长变化类似一条正弦曲线,但振幅正逐渐增大。通俗来讲,随着时间的推移,日长在平均日长时间线上有规律地上下波动,有时比24小时少几毫秒,有时又会比24小时多几毫秒,而极值却越来越大,即时间的变化幅度正在变大。
研究人员如何在数十年来搜集的日长数据库中找出这一规律?
“我们采用了国际地球自转服务系统提供的1962—2019年的日长变化数据,结合大量数值模拟算例分析,基于标准小波时频变换方法和我们独立发展的‘去小波边缘效应’的策略,首次发现了8.6年信号的振幅增大现象。”论文第一作者、中国科学院上海天文台副研究员段鹏硕表示。
他进一步解释到,标准小波时频变换方法是该领域比较独特的一种方法,能定量识别并提取观测序列中的周期性谐波信号。日常生活中7种单色光可以合成白光,白光也可以通过一个小小的三棱镜拆分出单色光,日长变化规律的探索也如此。事实上,日长与很多因素有关,如地球内部不同的物理结构或事件影响等。我们真实测量的日长数据可看成是一条综合波,可以拆分成很多不同因素主导的分波,学界将之称为小波。而标准小波时频变换方法就是学者们经常用到的“三棱镜”,可将想要分析的数据从综合数据中拆分出来。
然而,该方法虽具有很高的频率分辨能力,但也具有显著的边缘效应问题。研究团队自主研发的“去小波边缘效应”策略可以弥补这一不足,使得研究人员准确分离出目标谐波信号,最终找出日长变化背后隐藏的这一规律。